Gaussian Bounds for the Heat Kernels on the Ball and Simplex: Classical Approach
نویسندگان
چکیده
Two-sided Gaussian bounds are established for the weighted heat kernels on the unit ball and simplex in Rd generated by classical differential operators whose eigenfunctions are algebraic polynomials.
منابع مشابه
TIME-VARYING FUZZY SETS BASED ON A GAUSSIAN MEMBERSHIP FUNCTIONS FOR DEVELOPING FUZZY CONTROLLER
The paper presents a novel type of fuzzy sets, called time-Varying Fuzzy Sets (VFS). These fuzzy sets are based on the Gaussian membership functions, they are depended on the error and they are characterized by the displacement of the kernels to both right and left side of the universe of discourse, the two extremes kernels of the universe are fixed for all time. In this work we focus only on t...
متن کاملRobust Distributed Source Coding with Arbitrary Number of Encoders and Practical Code Design Technique
The robustness property can be added to DSC system at the expense of reducing performance, i.e., increasing the sum-rate. The aim of designing robust DSC schemes is to trade off between system robustness and compression efficiency. In this paper, after deriving an inner bound on the rate–distortion region for the quadratic Gaussian MDC based RDSC system with two encoders, the structure of...
متن کاملComparison inequalities for heat semigroups and heat kernels on metric measure spaces
We prove a certain inequality for a subsolution of the heat equation associated with a regular Dirichlet form. As a consequence of this inequality, we obtain various interesting comparison inequalities for heat semigroups and heat kernels, which can be used for obtaining pointwise estimates of heat kernels. As an example of application, we present a new method of deducing sub-Gaussian upper bou...
متن کاملSub-exponentially Localized Kernels and Frames Induced by Orthogonal Expansions
The aim of this paper is to construct sup-exponentially localized kernels and frames in the context of classical orthogonal expansions, namely, expansions in Jacobi polynomials, spherical harmonics, orthogonal polynomials on the ball and simplex, and Hermite and Laguerre functions.
متن کاملInformation Diffusion Kernels
A new family of kernels for statistical learning is introduced that exploits the geometric structure of statistical models. Based on the heat equation on the Riemannian manifold defined by the Fisher information metric, information diffusion kernels generalize the Gaussian kernel of Euclidean space, and provide a natural way of combining generative statistical modeling with non-parametric discr...
متن کامل